Reconstruction for 3D PET Based on Total Variation Constrained Direct Fourier Method
نویسندگان
چکیده
This paper presents a total variation (TV) regularized reconstruction algorithm for 3D positron emission tomography (PET). The proposed method first employs the Fourier rebinning algorithm (FORE), rebinning the 3D data into a stack of ordinary 2D data sets as sinogram data. Then, the resulted 2D sinogram are ready to be reconstructed by conventional 2D reconstruction algorithms. Given the locally piece-wise constant nature of PET images, we introduce the total variation (TV) based reconstruction schemes. More specifically, we formulate the 2D PET reconstruction problem as an optimization problem, whose objective function consists of TV norm of the reconstructed image and the data fidelity term measuring the consistency between the reconstructed image and sinogram. To solve the resulting minimization problem, we apply an efficient methods called the Bregman operator splitting algorithm with variable step size (BOSVS). Experiments based on Monte Carlo simulated data and real data are conducted as validations. The experiment results show that the proposed method produces higher accuracy than conventional direct Fourier (DF) (bias in BOSVS is 70% of ones in DF, variance of BOSVS is 80% of ones in DF).
منابع مشابه
Evaluation of a new gridding method for fully 3D direct Fourier PET reconstruction based on a two-plane geometry
This study investigated how the choice of fixed planes for the representation of the projection data of a cylindrical positron emission tomography (PET) scanner simplifies the frequency interpolation required by the 3D Fourier slice theorem (3D-FST). A new gridding algorithm based on a two-plane geometry and requiring only 1D interpolations in the Fourier domain was compared with the direct imp...
متن کاملIterative Reconstruction Methods for High- Throughput PET Scanners
Iterative reconstructions for clinical PET must run fast. We describe a clinical processing method based on sinogram rebinning, Fourier rebinning for the 3D to 2D data reduction, and iterative reconstruction using the attenuation-weighted OSEM method with a projector based on a gaussian pixel model. When this approach is used, multi-bed clinical oncology scans can be ready for diagnosis within ...
متن کاملApproximate Fourier Rebinning Algorithms for the Solution of the Data Truncation Problem in 3d Pet
This paper presents an extended three-dimensional (3D) exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is t...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملThe influence of using different reconstruction algorithms on sensitivity of quantitative 18F-FDG-PET volumetric measures to background activity variation
Introduction: This study aims to investigate the influence of background activity variation on image quantification in differently reconstructed PET/CT images. Methods: Measurements were performed on a Discovery-690 PET/CT scanner using a custom-built NEMA-like phantom. A background activity level of 5.3 and 2.6 kBq/ml 18F-FDG were applied. Ima...
متن کامل